OPTIMIZATION OF LAYING DUCKS FEED COMPOSITION USING THE K-MEANS CLUSTERING ALGORITHM METHOD IN SECANG SUBDISTRICT
Main Article Content
Abstract
Indonesia has significant potential in duck farming, particularly as a source of eggs and meat. However, the productivity of local laying ducks remains low due to the traditional feed management practices still widely used. In Secang District, Magelang Regency, farmers often determine feed composition based on availability and peer recommendations without proper consideration of nutritional requirements. This leads to imbalanced nutrition, negatively affecting egg production. This study aims to provide optimal feed composition recommendations using the K-Means Clustering algorithm. The algorithm clusters feed data based on nutritional content and egg production performance. Through this approach, farmers are expected to gain more accurate and efficient information in determining feed composition, thereby improving productivity, reducing operational costs, and enhancing product quality. Furthermore, this research contributes to the development of knowledge in both information technology and animal husbandry by applying machine learning techniques in the agricultural sector.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Akintan, O., Gebremedhin, K. G., & Uyeh, D. D. (2024). Animal Feed Formulation Connecting Technologies to Build a Resilient and Sustainable System. In Animals (Vol. 14, Issue 10). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ani14101497
Alva Mustika, F., & Dhika, H. (2022). Sistem Rekomendasi Film Menggunakan Metode K-Means Clustering Berbasis Web. Jurnal SIMETRIS, 13(2).
Annas, M., & Wahab, S. N. (2023). Data Mining Methods: K-Means Clustering Algorithms. International Journal of Cyber and IT Service Management, 3(1), 40–47. https://doi.org/10.34306/ijcitsm.v3i1.122
Ayu, D., Dewi, I. C., & Pramita, K. (2019). Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali. JURNAL MATRIX, 9(3), 102.
drh. Karinadintha Marsya Rachman. (2022, June 2). Pakan Bebek Petelur Per 100 Ekor: Jenis, Kebutuhan Nutrisi, Takaran dan Komposisi Pembuatan.
Fitri Yani, N., Elisia, R., & annisa. (2024). Overview Of Production and Development Challenges Of The Layer Ducks Farming Industry In Indonesia And Globally. Jurnal Tropicalanimal, 2. https://doi.org/10.24036/jeta.v2i2.55
Giantika Utami, D. (2022). Penerapan Algoritma K-Means untuk Pengelompokan Produksi Telur Ayam Ras Petelur di Indonesia. 3(1). www.bps.go.id.
H. Rahmat Rukmana. (2024). Panduan Lengkap Ternak Itik Petelur & Pedaging Secara Intensif (seno wibowo, Ed.). Lily Publisher.
Hamouda, R. E., Youssef, I. M., Gharib, H. B., El-Menawey, M. A., Youssif, M. A. M., Osman, M. A., Abdel-Aziz, Y. A., Rudayni, H. A., Allam, A. A., Alawam, A. S., Khafaga, A. F., Abd El-Hack, M. E., & Abdel-Halim, A. A. (2025). Effects of an enhanced feeding model on productivity and sustainability of broilers and hybrid chickens under Egyptian small-scale family systems. Poultry Science, 104(11). https://doi.org/10.1016/j.psj.2025.105845
Javed Mehedi Shamrat, F. M., Tasnim, Z., Mahmud, I., Jahan, N., & Islam Nobel, N. (2020). Application Of K-Means Clustering Algorithm To Determine The Density Of Demand Of Different Kinds Of Jobs. International Journal ff Scientific & Technology Research, 9, 2. www.ijstr.org
Ma, P., Zhang, Z., Li, Y., Yu, N., Sheng, J., Küçük McGinty, H., Wang, Q., & Ahuja, J. K. (2022a). Deep learning accurately predicts food categories and nutrients based on ingredient 1 statements 2.
Ma, P., Zhang, Z., Li, Y., Yu, N., Sheng, J., Küçük McGinty, H., Wang, Q., & Ahuja, J. K. (2022b). Deep learning accurately predicts food categories and nutrients based on ingredient 1 statements 2.
Maori, N. A. (2023). Metode Elbow Dalam Optimasi Jumlah Cluster pada K-Means Clustering. Jurnal SIMETRIS, 14.
Maylawati, D. S., Priatna, T., Sugilar, H., & Ramdhani, M. A. (2020). Data science for digital culture improvement in higher education using K-means clustering and text analytics. International Journal of Electrical and Computer Engineering, 10(5), 4569–4580. https://doi.org/10.11591/IJECE.V10I5.PP4569-4580
Naeem, M., Jia, Z., Wang, J., Poudel, S., Manjankattil, S., Adhikari, Y., Bailey, M., & Bourassa, D. (2025a). Advancements in machine learning applications in poultry farming: a literature review. Journal of Applied Poultry Research, 100602. https://doi.org/10.1016/j.japr.2025.100602
Naeem, M., Jia, Z., Wang, J., Poudel, S., Manjankattil, S., Adhikari, Y., Bailey, M., & Bourassa, D. (2025b). Advancements in machine learning applications in poultry farming: a literature review. Journal of Applied Poultry Research, 100602. https://doi.org/10.1016/j.japr.2025.100602
Nuningtyas, Y. F., Natsir, M. H., Widyastuti, E. S., Sjofjan, O., Susilo, A., Widiati, A. S., & Lestari, S. P. (2023). Laying Hens Growth Performance in the Peak Production Phase Offered Bio-Herbal as a Feed Additive. Jurnal Ilmu-Ilmu Peternakan, 33(1), 25–32. https://doi.org/10.21776/ub.jiip.2023.033.01.04
Rozi, I. F., Firdausi, A. T., Rahmadhany, T. R., Studi, P., Informatika, T., Informasi, J. T., & Malang, P. N. (n.d.). JIP (Jurnal Informatika Polinema) Penentuan Bahan Makanan Untuk Itik Petelur Menggunakan Algoritma Genetika.
Slamet Prihatin. (2020, December 19). ITIK Mojosari. https://bukanrobot.home.blog/2020/12/19/itik-mojosari/?utm_source=chatgpt.com
Tukiyat, Anggai, S., & Agnia Bilqisti. (2024). Analysis of Broiler Chicken Production Success Classification Using K-Nearest Neighbors And Naive Bayes Methods at PT. Jandela Jaga Kaloka (Jajaka). Digitus : Journal of Computer Science Applications, 2(4), 158–182. https://doi.org/10.61978/digitus.v2i4.396
Zhang, S., Lai, C., Zhao, J., & Wang, J. (2025a). Big Data and AI-Powered Modeling: A Pathway to Sustainable Precision Animal Nutrition. In Advanced Science. John Wiley and Sons Inc. https://doi.org/10.1002/advs.202507564
Zhang, S., Lai, C., Zhao, J., & Wang, J. (2025b). Big Data and AI-Powered Modeling: A Pathway to Sustainable Precision Animal Nutrition. In Advanced Science. John Wiley and Sons Inc. https://doi.org/10.1002/advs.202507564